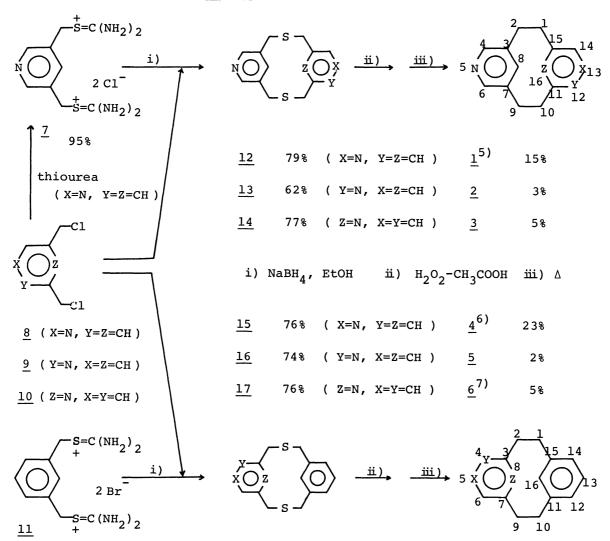
SYNTHESES OF NEW [2.2]PYRIDINOPHANES¹⁾

Toshihide KAWASHIMA, Shiroh KURIOKA, Yasuo TOHDA, Masahiro ARIGA,
Yutaka MORI, and Soichi MISUMI

Department of Chemistry, Osaka Kyoiku University, Minamikawahori-cho,
Tennoji-ku, Osaka 543

[†]The Institute of Scientific and Industrial Research, Osaka University,

Mihogaoka, Ibaraki 567


Six meta-bridged [2.2]pyridinophanes including three new compounds are synthesized successfully via the corresponding cyclic disulfides. Electronic effect of nitrogen atoms in pyridine rings constructed in a [2.2]metacyclophane-like stepped form is studied on the basis of their ¹H and ¹³C NMR spectra.

We have previously described the synthesis of a novel analogue of methyl-viologen by the transannular reaction of [2.2](3,5) pyridinophane $(\frac{1}{2})$ under reductive conditions. The fact indicates that the meta-bridged [2.2](m,n) pyridinophanes are expected to be very efficient intermediates for preparing the condensed hetero aromatics. A few of such pyridinophanes have been known, but no (2,4) pyridinophane having [2.2] metacyclophane-like framework has been reported yet. Now we wish to report the syntheses of several pyridinophanes 1-6 involving (2,4) pyridinophanes and some spectral data of them.

Bis(chloromethyl)pyridines ($\underline{8}$, $\underline{9}$, and $\underline{10}$) were prepared from the corresponding lutidines by the known method⁴⁾ with some modification. The compounds $\underline{8}$ and $\underline{10}$ were purified by recrystallization but the chloride $\underline{9}$ was used without further purification because of its instability. Bis(isothiouronium) salts ($\underline{7}$ and $\underline{11}$) were obtained from the corresponding halomethyl compounds by treatment with thiourea in 95% and 92% yields respectively. Direct coupling of $\underline{7}$ and $\underline{10}$ to cyclic disulfide ($\underline{14}$) without isolation of intermediate dithiol was carried out with sodium borohydride in ethanol under high-dilution condition. After purification, the disul-

1290 Chemistry Letters, 1985

fide $\underline{14}$ was obtained as colorless plates from benzene-hexane in 77% yield. Other disulfides ($\underline{12}$, $\underline{13}$, $\underline{15}$, $\underline{16}$, and $\underline{17}$) were also prepared from halides ($\underline{8}$, $\underline{9}$, and $\underline{10}$) and isothiouronium salts ($\underline{7}$ and $\underline{11}$) in a similar way to that used for $\underline{14}$. 2,11-Di-thia[3.3](3,5)pyridinophane $\underline{12}$ was converted to the corresponding disulfone with H_2O_2 -acetic acid in 81% yield and the disulfone was pyrolyzed at 700 °C/8×10⁻²Torr to give the target cyclophane, [2.2](3,5)pyridinophane $\underline{1}$. The compounds $\underline{1}$ was purified by column chromatography on silica gel and recrystallization from chloroform-acetone (15% yield on $\underline{12}$)[$\underline{1}$: $\underline{5}$) colorless prisms, mp 268-271 °C (in sealed tube)].

Two different (3,5)pyridinophanes, [2.2](2,4)(3,5)pyridinophane ($\underline{2}$)[$\underline{2}$: colorless plates from benzene-hexane, mp147-148 °C] and [2.2](2,6)(3,5)pyridinophane ($\underline{3}$) [3: colorless needles from benzene-hexane, mp164-166 °C] were synthesized in a quite similar manner as used for $\underline{1}$. The other disulfides ($\underline{15}$, $\underline{16}$, and $\underline{17}$) were also treated with $\underline{H_2O_2}$ -acetic acid and the resulting disulfones were pyrolyzed at 500-

700 °C to give desired reference compounds, [2]metacyclo[2](3,5)pyridinophane ($\underline{4}$) [$\underline{4}$.60 colorless scales from ethanol, mp 164-165 °C], [2]metacyclo[2](2,4)pyridinophane (5)[$\underline{5}$: colorless needles from hexane, mp 113-115 °C], and [2]metacyclo[2](2,6)pyridinophane ($\underline{6}$)[$\underline{6}$:70 colorless plates from hexane, mp 181-183 °C (in sealed tube)]. The structures of these pyridinophanes $\underline{1}$ - $\underline{6}$ were characterized by elemental analyses and NMR spectral data. (Tables 1 and 2)

	1										
Table l.	TH NMR	data	of	pyridinophanes	1-6	(δ	ppm	in	CDCl,	360	MHz)

Compd	H-4	H - 5	H-8	н-13	н-14	н-16
<u>1</u>	8.386		4.549		8.386	4.549
<u>2</u>	8.318 8.365 or		4.510	8.529	6.990	4.355
<u>3</u>	8.349		4.600	7.630	7.129	
<u>4</u> 8)	8.313		4.355	7.327	7.099	4.411
<u>5</u>		8.474	4.247	7.307	6.930 6.943 or	4.348
<u>6</u>	7.074	7.577		7.307	7.098	4.389

The aromatic inner protons (H-8 and H-16) of pyridinophanes $\underline{1-6}$ show marked upfield shift due to the magnetic anisotropy of the partially overlapped aromatic rings which are fixed in a stepped form as in [2.2]metacyclophane. The signal of H-16 proton of (3,5)pyridinophane $\underline{4}$ appears in the most lowfield (δ 4.411) among those of metacyclopyridinophanes $\underline{4-6}$. Similarly, C-16 carbon chemical shift (δ 138.34) of $\underline{4}$ is situated in somewhat lower field compared to that (δ 135.61) of (2,4)pyridinophane $\underline{5}$, which is comparable to δ 136.3 of [2.2]metacyclophane. 9) The same tendency is observed between those of H-8 and C-16 of pyridinophanes $\underline{1}$ and $\underline{2}$. These facts indicate that electron density on inner carbon atom of pyridine ring

Table 2. ^{13}C NMR data of pyridinophanes $\underline{1}$ - $\underline{6}$ (δ ppm in CDCl $_3$, 90 MHz)

Compd	C-4	C-5	C-8	C-13	C-14	C-16	
-	147.10		145.11		147.19	145.11	
Ŧ	147.19		143.11		14/•13	T47.TT	
2	146.67 147.10 or		142.39	150.14	120.31	132.70	
<u>3</u>	146.34		144.04	137.70	120.49	4-12-12-13	
4	146.71		143.40	129.68	125.82	138.34	
<u>5</u>		149.36	130.88	129.36	125.37 or 125.80 or	135.61	
<u>6</u>	120.04	137.20		129.08	125.12	138.24	

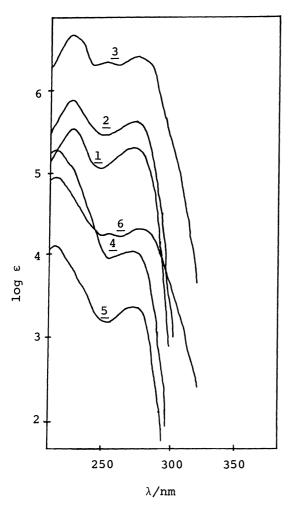


Fig. 1. UV spectra of pyridinophanes $\frac{1-6}{2}$ in THF. 11)

influences considerably on the electronic state of faced aromatic rings, especially of its inner carbon atoms, due to π -transannular interactions. In the case of (2,6)pyridinophanes, $\underline{3}$ and $\underline{6}$, on the other hand, high electron density on the inner pyridine nitrogen atoms induces more severe steric compression than in [2.2]metacyclophane to result in downfield shift of C-8 ($\underline{3}$) and C-16 ($\underline{6}$) absorptions in spite of the electronic effect.

The electronic spectra of pyridinophanes $\underline{1-6}$ are shown in Fig. 1. There are observed a little bathochromic shift and disappearance of fine structures on absorption bands as compared with those of the corresponding lutidines. 10) It is probably due to some π -transannular interactions between chromophores as well as ring strain.

Further work is in progress and will be presented elsewhere.

References

- 1) The Chemistry of Constrained Hetero Aromatics. II.
- 2) T.Kawashima, K.Yoshida, Y.Tohda, M.Ariga, Y.Mori, Y.Sakata, and S.Misumi, Tetrahedron Lett., 25, 1585 (1984).
- 3) G.R.Newkome, J.D.Sauer, J.M.Roper, and D.C.Hager, Chem. Rev., <u>77</u>, 513 (1977).
- 4) K.Tsuda, N.Ikekawa, R.Takasaki, and Y.Yamakawa, Chem. Pharm. Bull. Jpn., $\underline{1}$, 142 (1953).
- 5) W.Jenny and H.Holzrichter, Chimia, <u>21</u>, 509 (1967).
- 6) J.Bruhin, W.Kneubühler, and W.Jenny, Chimia, 27, 277 (1973).
- 7) J.R.Fletcher and I.O.Sutherland, J. Chem. Soc., Chem. Commun., 1969, 1504.
- 8) Ref. 6. They reported that the chemical shift of H-8 is δ 4.44 and of H-16 is δ 4.39 in CDCl₃ (100 MHz).
- 9) T.Sato and T.Takemura, J. Chem. Soc., Chem. Commun., 1974, 97.
- 10) N. Ikekawa, M. Maruyama, and Y. Sato, Chem. Pharm. Bull. Jpn., 2, 209 (1954).
- 11) The curves, except that of compound $\underline{5}$ at the bottom, have been displaced upward on the ordinate axis by 0.5 log ϵ unit increments from the curve immediately below.

(Received May 11, 1985)